3,571 research outputs found

    Semantic Event Model and Its Implication on Situation Detection

    Get PDF
    Events are at the core of reactive applications, which have become popular in many domains. Contemporary modeling tools lack the capability express the event semantics and relationships to other entities. This research is aimed at providing the system designer a tool to define and describe events and their relationships to other events, object and tasks. It follows the semantic data modeling approach, and applies it to events, by using the classification, aggregation, generalization and association abstractions in the event world. The model employs conditional generalizations that are specific to the event domain, and determine conditions in which an event that is classified to lower level class, is considered as a member of a higher-level event class, for the sake of reaction to the event. The paper describes the event model, its knowledge representation scheme and its properties, and demonstrates these properties through a comprehensive example

    Managing Uncertain Complex Events in Web of Things Applications

    Get PDF
    A critical issue in the Web of Things (WoT) is the need to process and analyze the interactions of Web-interconnected real-world objects. Complex Event Processing (CEP) is a powerful technology for analyzing streams of information about real-time distributed events, coming from different sources, and for extracting conclusions from them. However, in many situations these events are not free from uncertainty, due to either unreliable data sources and networks, measurement uncertainty, or to the inability to determine whether an event has actually happened or not. This short research paper discusses how CEP systems can incorporate different kinds of uncertainty, both in the events and in the rules. A case study is used to validate the proposal, and we discuss the benefits and limitations of this CEP extension.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Semantic Event Model and its Implication on Situation Detection

    Get PDF
    Abstract -Events are at the core of reactive applications, which have become popular in many domains. Contemporary modeling tools lack the capability express the event semantics and relationships to other entities. This research is aimed at providing the system designer a tool to define and describe events and their relationships to other events, object and tasks. It follows the semantic data modeling approach, and applies it to events, by using the classification, aggregation, generalization and association abstractions in the event world. The model employs conditional generalizations that are specific to the event domain, and determine conditions in which an event that is classified to lower level class, is considered as a member of a higher-level event class, for the sake of reaction to the event. The paper describes the event model, its knowledge representation scheme and its properties, and demonstrates these properties through a comprehensive example

    Digital Avatars for Older People’s Care

    Get PDF
    Es el preprint de: Bertoa M.F., Moreno N., Perez-Vereda A., Bandera D., Álvarez-Palomo J.M., Canal C. (2020) Digital Avatars for Older People’s Care. In: García-Alonso J., Fonseca C. (eds) Gerontechnology. IWoG 2019. Communications in Computer and Information Science, vol 1185. Springer, Cham. doi:10.1007/978-3-030-41494-8_6.The continuous increase in life expectancy poses a challenge for health systems in modern societies, especially with respect to older people living in rural low-populated areas, both in terms of isolation and difficulty to access and communicate with health services. In this paper, we address these issues by applying the Digital Avatars framework to Gerontechnology. Building on our previous work on mobile and social computing, in particular the People as a Service model, Digital Avatars make intensive use of the capabilities of current smartphones to collect information about their owners, and applies techniques of Complex Event Processing extended with uncertainty for inferring the habits and preferences of the user of the phone and building with them a virtual profile. These virtual profiles allow to monitor the well-being and quality of life of older adults, reminding pharmacological treatments and home health testings, and raising alerts when an anomalous situation is detected.This work has been funded by the Spanish Government under grant PGC2018-094905-B-100

    Measurement of the hadronic photon structure function F_{2}^{Îł} at LEP2

    Get PDF
    The hadronic structure function of the photon F_{2}^{Îł} (x, QÂČ) is measured as a function of Bjorken x and of the photon virtuality QÂČ using deep-inelastic scattering data taken by the OPAL detector at LEP at eâșe⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{Îł} are extended to an average QÂČ of 〈QÂČ〉=780 GeVÂČ using data in the kinematic range 0.15<x<0.98. The QÂČ evolution of F_{2}^{Îł} is studied for 12.1<〈QÂČ〉<780 GeVÂČ using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{Îł} with F_{2}^{Îł} (QÂČ)/α = (0.08±0.02âș⁰·⁰⁔_₀.₀₃) + (0.13±0.01âș⁰·⁰Âč_₀.₀₁) lnQÂČ, where QÂČ is in GeVÂČ, for the central x region 0.10–0.60. Several parameterisations of F_{2}^{Îł} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data

    Measurement of the charm structure function F_{2,c)^{Îł} of the photon at LEP

    Get PDF
    The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal eâșe⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction eâșe⁻→eâșe⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0âșÂČ·âč_₂.₃ pb

    Measurement of triple gauge boson couplings from WâșW⁻ production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻Âč. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain Îș = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    Measurement of triple gauge boson couplings from WW production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb^-1. After combining with our previous measurements at centre-of-mass energies of 161-183 GeV we obtain k_g=0.97 +0.20 -0.16, g_1^z=0.991 +0.060 -0.057 and lambda_g=-0.110 +0.058 -0.055, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their SM values. These results are consistent with the Standard Model expectations.Comment: 28 pages, 8 figures, submitted to Eur. Phys. J.

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time
    • 

    corecore